Abstract

Emp47p is a yeast Golgi transmembrane protein with a retrograde, Golgi to ER transport di-lysine signal in its cytoplasmic tail. Emp47p has previously been shown to recycle between the Golgi complex and the ER and to require its di-lysine signal for Golgi localization. In contrast to other proteins with di-lysine signals, the Golgi-localization of Emp47p has been shown to be preserved in ret1-1 cells expressing a mutant alpha-COP subunit of coatomer. Here we demonstrate by sucrose gradient fractionation and immunofluorescence analysis that recycling of Emp47p was unimpaired in ret1-1. Furthermore we have characterized three new alleles of ret1 and showed that Golgi localization of Emp47p was intact in cells with those mutant alleles. We could correlate the ongoing recycling of Emp47p in ret1-1 with preserved in vitro binding of coatomer from ret1-1 cells to immobilized GST-Emp47p-tail fusion protein. As previously reported, the di-lysine signal of Wbp1p was not recognized by ret1-1 mutant coatomer, suggesting a possible role for alpha-COP in the differential binding to distinct di-lysine signals. In contrast to results with alpha-COP mutants, we found that Emp47p was mislocalised to the vacuole in mutants affecting beta'-, gamma-, delta-, and zeta-COP subunits of coatomer and that the mutant coatomer bound neither to the Emp47p nor to the Wbp1p di-lysine signal in vitro. Therefore, the retrograde transport of Emp47p displayed a differential requirement for individual coatomer subunits and a special role of alpha-COP for a particular transport step in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.