Abstract

Advances in liquid scintillation counting (LSC) technologies, such as imporved scintillation cocktail formulations and alpha-beta radiation discrimination, make LSC suitable for applications in uranium process chemistry. Ease of use, low cost, and the huge dynamic range of LSC are distinct advantages for analytical support of actinide processing. All uranium isotopes decay primarily with alpha radiation emission. The immediate short-lived daughters of238U are234Th and234Pa. These nuclides are beta emitters having energy bands that overlap the uranium bands in a liquid scintillation spectrum. The resolution of these overlapping bands by alpha-beta radiation discrimination is useful for uranium quantification and purity verification. Protactinium-234 is a high-energy beta emitter that can be further identified and quantified from it's Cherenkov radiation. Energy spectra were collected on the Packard 2500AB liquid scintillator analyzer for uranyl solutions in diisopropylnaphthalene and pseudocumene based scintillator cocktails. Calibration curves were prepared for nitric, hydrochloric, and sulfuric acid media. Base titrations demonstrated the effect of acid quenching on those system. Ion exchange and water soluble polymer extraction studies are readily followed using liquid scintillation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.