Abstract

A recently introduced algorithm for multirate vector quantization is used for coding image pyramids. The algorithm, called alphabet- and entropy-constrained vector quantization (AECVQ), operates by optimally choosing sub-codebooks from a large generic codebook. Simulations using 1-D AR and speech samples and full-band image data have shown the performance of AECVQ to be equal to that of entropy-constrained VQ (ECVQ); however, the ECVQ,which is also the best existing vector quantizer, is a single-rate coder. Excellent results at 1 bpp and below, judged both visually and using peak-to-peak SNR criterion, have been obtained by coding image pyramids using the AECVQ algorithm. These results demonstrate significant improvements over existing schemes. Although an AECVQ-based image coding scheme is considerably complex, it can be implemented in real time using current VLSI technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.