Abstract

We examined the late coronary vascular response to carotid chemoreceptor reflex activation in normal, conscious dogs instrumented for the measurement of right main and left circumflex coronary artery blood flows, arterial and right ventricular pressures, and arterial and coronary sinus blood gases and O2 contents. With heart rate held constant by electrical stimulation, and with respiration controlled or allowed to vary spontaneously, carotid chemoreceptor reflex activation (induced by intracarotid nicotine) elicited a striking biphasic coronary vascular response characterized by an early dilation (previously described) and a late constriction. For example, with respiration controlled and with the autonomic nervous system intact, carotid chemoreceptor reflex activation resulted in a late increase in arterial pressure (19 +/- 4%; P less than 0.002), absolute reductions in right main (24 +/- 4%; P less than 0.002), and left circumflex (12 +/- 2%; P less than 0.004) coronary blood flows, and increases in right (62 +/- 13%; P less than 0.002) and left (26 +/- 3%; P less than 0.0001) coronary resistances. This carotid chemoreceptor reflex activation-induced late coronary constriction was also associated with a concomitant increase in myocardial oxygen extraction, i.e., arterial oxygen content remained constant, while coronary sinus oxygen content decreased (19 +/- 6%; P less than 0.04). Neither propranolol nor atropine had any significant effect on the magnitude of the right coronary constriction. However, both the absolute reduction in right coronary blood flow and increase in right coronary resistance were abolished by phentolamine. Furthermore, either total cardiac denervation or adrenalectomy significantly attenuated (P less than 0.01) carotid chemoreceptor reflex activation-induced reductions in right coronary blood flow and increase in right coronary resistance. We conclude that, with autonomic nervous system activity intact, carotid chemoreceptor reflex activation can elicit an absolute reflexly mediated reduction in coronary blood flow in the normal, conscious dog, despite an increase in arterial pressure. The mechanism of this vasoconstriction involves alpha-adrenergic receptor stimulation mediated by both cardiac sympathetic nerves and circulating catecholamines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call