Abstract
The effects of alpha- and beta-adrenergic stimulation on sarcolemmal protein phosphorylation and contractile slow responses were studied in intact myocardium. Isolated rat ventricles were perfused via the coronary arteries with 32Pi after which membrane vesicles partially enriched in sarcolemma were isolated from individual hearts. Alterations in the sarcolemmal slow inward Ca2+ current were assessed in the 32P-perfused hearts using a contractile slow response model. In this model, Na+ channels were first inactivated by partial depolarization of the hearts in 25 mM K+ after which alterations in Ca2+ channel activity produced by either alpha- or beta-adrenergic agonists could be assessed as restoration of contractions. alpha-Adrenergic stimulation (phenylephrine + propranolol) of the perfused hearts resulted in increased 32P incorporation into a 15-kDa sarcolemmal protein. This protein co-migrated with the 15-kDa sarcolemmal protein phosphorylated in hearts exposed to beta-adrenergic stimulation produced by isoproterenol. beta-Adrenergic stimulation, but not alpha-adrenergic stimulation, also resulted in phosphorylation of the sarcoplasmic reticulum protein, phospholamban. Phosphorylation of the 15-kDa protein in perfused hearts in response to either alpha- or beta-adrenergic stimulation was associated with restoration of contractions, indicative of increases in the slow inward Ca2+ current. Increases in 32P incorporation into the 15-kDa protein preceded restoration of contractions by phenylephrine. Nifedipine abolished the contractile responses to alpha-adrenergic stimulation while having no effect on increases in 15-kDa protein phosphorylation. The effects of alpha-adrenergic stimulation occurred in the absence of increases in cAMP levels. These results suggest that phosphorylation of the 15-kDa protein may be involved in increases in the slow inward current produced by stimulation of either alpha- or beta-adrenergic receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.