Abstract

Severe haemorrhage is a common cause of death despite the recent advances in critical care. Conventional resuscitation fluids are designed to re-establish tissue perfusion, but they fail to prevent inflammatory responses during resuscitation. Our previous studies indicated that the vagus nerve can modulate systemic inflammation via the alpha7 nicotinic acetylcholine receptor (α7nAchR). Here, we report that the alpha7nAChR-agonist, GTS, restrains systemic inflammation and improves survival during resuscitation. Resuscitation with GTS rescued all the animals from lethal haemorrhage in a concentration-dependent manner. Unlike conventional resuscitation fluids, GTS inhibited the production of characteristic inflammatory and cardiodepressant factors including tumour necrosis factor (TNF) and high mobility group B protein-1 (HMGB1). Resuscitation with GTS was particularly effective in restraining systemic TNF responses and inhibiting its production in the spleen. At the molecular level, GTS inhibited p65RelA but not RelB NF-κB during resuscitation. Unlike non-specific nicotinic agonists, GTS inhibited serum protein TNF levels in both normal and splenectomized, haemorrhagic animals. Resuscitation with GTS inhibited poly(ADP-ribose) polymerase and systemic HMGB1 levels. Our studies suggest that GTS provides significant advantages as compared with non-specific nicotinic agonists, and it could be a promising anti-inflammatory supplement to improve survival during resuscitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.