Abstract

BackgroundAlpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania.ResultsWe started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation.ConclusionsInformation found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania speciation. In the L. braziliensis genome database, two loci containing α-tubulin sequences were found, but only the locus at chromosome 13 contains the prototypic α-tubulin genes, which are repeated in a head-to-tail manner. Also, we determined that the levels of α-tubulin mRNAs are down-regulated drastically in response to heat shock by a post-transcriptional mechanism which is dependent upon active protein synthesis.

Highlights

  • Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport

  • We studied the organization of α-tubulin genes in Leishmania braziliensis based on the available, yet incomplete, genome sequence

  • According to the genome database (GeneDB), the Leishmania infantum (MCAN/ ES/98/LLM-877) genome contains two α-tubulin loci, both located at chromosome 13 and separated by a region of 436.6 kb

Read more

Summary

Introduction

Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. The objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. A highly conserved protein along the eukaryotic evolutionary tree, interacts with β-tubulin conforming an α/β-tubulin heterodimer that comprises the structural subunit of microtubules, the basic building structure of the cytoskeleton, which is responsible for cell shape and is involved in many essential processes, including cell division, ciliary and flagellar motility and intracellular transport [1]. Studies aimed to uncover the regulation responsible for the differential expression of tubulin genes were initiated shortly after [6], but this has resulted to be a difficult task due to the complex genome organization of tubulin genes [7], in particular, and to the non-conventional mechanisms of gene regulation operating in Leishmania [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.