Abstract

Untransformed bovine anterior pituitary cells cultured in serum-free defined medium secrete an epidermal growth factor (EGF)-like peptide with an amino acid composition similar to rat or human alpha-transforming growth factor (alpha TGF). To further characterize the bovine pituitary alpha TGF, it was compared to a human alpha TGF partially purified from the conditioned medium of a human melanoma cell line. An anti-alpha TGF monoclonal antibody, MF9, was produced from hybridomas derived from mice immunized with a 17-residue synthetic peptide corresponding to the carboxyl-terminal sequence of rat alpha TGF. The hybridoma supernatants were initially screened for the ability to immunoprecipitate 125I-peptide and then tested for recognition of human alpha TGF. Only 2 of 36 antipeptide antibodies recognized the native alpha TGF. The binding of 125I-peptide to MF9 was displaced by human alpha TGF but not by EGF. Bovine pituitary alpha TGF also displaced the binding of 125I-peptide to MF9 in a similar manner to human alpha TGF. Both iodinated human and bovine pituitary alpha TGF were immunoprecipitated by MF9 whereas 125I-EGF was not. Recognition of alpha TGF by MF9 was strongly dependent on sulfhydryl reduction of the growth factors, suggesting that synthetic peptides representing sulfhydryl-rich protein are not ideal immunogens. Tryptic digests of both 125I-alpha TGFs chromatographed to give a single, indistinguishable peak of iodinated material on a reverse-phase C18 high performance liquid chromatography column when eluted with two different solvent systems, suggesting the generation of a single and identical tyrosine-containing tryptic peptide from both alpha TGFs. The comparisons of the bovine pituitary and human melanoma alpha TGF using a sequence-specific monoclonal antibody and peptide mapping suggest that these alpha TGFs are related and that alpha TGF production is not limited to transformed or fetal sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.