Abstract
Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.