Abstract

The kinetics of alpha-NADH-dichlorophenolindophenol (DCPIP) and alpha-NADH-cytochrome c reductase reactions of rat liver microsomes showed that the reactio ns proceeded by a ping-pong mechanism, and that the oxidation of alpha-NADH was the rate-determining reaction. The DCPIP-reducing activity with alpha-NADH in the presence of ADP was about 1% of that with beta-NADH. ADP inhibited the alpha-NADH-DCPIP reductase reaction in a competitive manner with respect to alpha-NADH and a value of 1.2 mM for the inhibition constant was obtained. ADP also inhibited cytochrome b5 reduction with alpha-NADH. More than 90% of cytochrome b5 was reduced under conditions where 90% of the alpha-NADH-DCPIP reductase activity was suppressed with ADP. The reduction of DCPIP with alpha-NADH preceded that of cytochrome b5, but the reductions partly overlapped. From these results, a diversed electron flow from alpha-NADH to cytochrome b5 and electron sharing between cytochrome b5 and DCPIP were indicated. alpha-NAD+ also inhibited the alpha-NADH-DCPIP reductase reaction. Analyses of the inhibition indicated that two types of alpha-NADH-DCPIP reductase reaction existed, one of which was resistant to alpha-NAD+ inhibition. In contrast to the reoxidation of beta-NADH-reduced cytochrome b5, the process was largely monophasic when cytochrome b5 was reduced with alpha-NADH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call