Abstract

Variability in perception between individuals may be a consequence of different inherent neural processing speeds. To assess whether alpha oscillations systematically reflect a feedback pacing mechanism for cortical processing during visual perception, comparisons were made between alpha oscillations, visual suppression from TMS, visual evoked responses, and metacontrast masking. Peak alpha oscillation frequencies, measured through scalp EEG recordings, significantly correlated with the optimum latencies for visual suppression from TMS of early visual cortex. Individuals with shorter alpha periods (i.e., higher peak alpha frequencies) processed visual information faster than those with longer alpha periods (i.e., lower peak alpha frequencies). Moreover, peak alpha oscillation periods and optimum TMS visual suppression latencies predicted the latencies of late but not early visual evoked responses. Together, these findings demonstrate an important role of alpha oscillatory and late feedback activity in visual cortex for conscious perception. They also show that the timing for visual awareness varies across individuals, depending on the pace of one's endogenous oscillatory cycling frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call