Abstract

In this work, alkaline hydrogen evolution reaction (HER) processes of three typical nickel-based electrocatalysts [i. e., Ni, α-Ni(OH)2 , and β-Ni(OH)2 ] were investigated to probe critical factors that determine the activity and durability. The HER activity trend was observed as Ni≫α-Ni(OH)2 >β-Ni(OH)2 , likely attributed to a synergy between metallic Ni and Ni(OH)2 components on the Ni surface and fast water dissociation kinetics on the α-Ni(OH)2 surface. With the HER proceeding, the metallic Ni surface, however, gradually became α-Ni(OH)2 , and α-Ni(OH)2 surface ultimately transformed into β-phase, leading to a dramatic activity decrease of Ni electrodes. Therefore, Ni electrodes were coated with α-Ni(OH)2 nanosheets to slow down the nickel hydroxylation and optimize the surface ratio of Ni(OH)2 to metallic Ni. This simple coating procedure enhanced both activity and durability of Ni electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.