Abstract

Prolonged and strenuous exercise has been proposed as a possible source of male-factor infertility. Forced intensive swimming has also been identified as one source of a dysfunctional male reproduction system. The present study evaluated the possible protective role of α-lipoic acid and N-acetylcysteine (NAC) on intensive swimming-induced germ-cell depletion in adult male rats. Forced exhaustive swimming of 1 hr/day, 6 days/week for 8 consecutive weeks resulted in a significant (P < 0.05) reduction in epididymal sperm; testicular androgenic enzyme activities; and plasma and intra-testicular testosterone; and produced different types of germ cells in the seminiferous epithelium cycle. Conversely, plasma corticosterone levels and sperm-head abnormalities increased. Western-blot analysis showed a considerable decrease in testicular StAR protein expression whereas reverse-transcriptase PCR analysis showed no significant change in cytochrome P450scc (Cyp11a1) gene expression. Significant (P < 0.05) elevation in testicular reactive oxygen species (ROS), lipid peroxidation, protein carbonyl content versus reduction in glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione S-transferase, and caspase-3 activities along with a depletion in the glutathione pool, mitochondrial membrane potential (▵ψm ), and intracellular ATP generation. A considerable level of DNA damage in testicular spermatogenic cells were also noted following forced extensive swimming. Alpha-lipoic acid and NAC supplementation prevented the swimming-induced testicular spermatogenic and steroidogenic disorders by lowering ROS generation. We therefore conclude that intensive forced swimming causes germ-cell depletion through the generation of ROS and depletion of steroidogenesis in the testis, which can be protected by the co-administration of α-lipoic acid and NAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call