Abstract

Autophosphorylation of the alpha-isoform of Ca2+/calmodulin-dependent kinase II switches the kinase into an autonomous activity mode. This molecular switch is important for hippocampal long-term memory formation, which requires de novo gene transcription and protein synthesis. Here, we have studied whether auto-phosphorylation of the alpha-isoform of Ca2+/calmodulin-dependent kinase II is required for gene transcription induced in the hippocampus by contextual fear conditioning. We have shown that upregulation of a nonassociative transcript, the serum and glucocorticoid-induced kinase-1 messenger RNA, is normal in alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation-deficient mutant mice, whereas upregulation of an associative transcript, the nerve growth factor-inducible gene B messenger RNA, is impaired. Thus, we suggest that autophosphorylation of the alpha-isoform of Ca2+/calmodulin-dependent kinase II is a biochemical switch that regulates association-specific consolidation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.