Abstract

Interpersonal touch plays a crucial role in human communication, development, and wellness. Mediated interpersonal touch (MIT), a technology to distance or virtually simulated interpersonal touch, has received significant attention to counteract the negative consequences of touch deprivation. Studies investigating the effectiveness of MIT have primarily focused on self-reporting or behavioral correlates. It is largely unknown how MIT affects neural processes such as interbrain functional connectivity during human interactions. Given how users exchange haptic information simultaneously during interpersonal touch, interbrain functional connectivity provides a more ecologically valid way of studying the neural correlates associated with MIT. In this study, a palm squeeze task is designed to examine interbrain synchrony associated with MIT using EEG-based hyperscanning methodology. The phase locking value (PLV) index is used to measure interbrain synchrony. Results demonstrate that MIT elicits a significant increase in alpha interbrain synchronization between participants' brains. Especially, there was a significant difference in the alpha PLV indices between no MIT and MIT conditions in the early stage (130-470 ms) of the interaction period (t-test, p < 0.05). Given the role that alpha interbrain synchrony plays during social interaction, a significant increase in PLV index during MIT interaction seems to indicate an effect of social coordination. The findings and limitations of this study are further discussed, and perspectives on future research are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call