Abstract

A fluid dynamics based model has been used to determine the deposition patterns of inhaled radon daughters in a realistic approach of the bronchial airway geometry. The interaction of the emitted alpha particles with epithelial cells has been analyzed by applying a complex hit probability model (Bronchial Alpha Hit Model). The biological response of the hit cells has been calculated by the Probability-Per-Unit-Track-Length Model, which relates the probability of a specific biological effect to the track length of alpha particles as a function of the particles' LET. The models mentioned above form a complex lung-radon interaction description. The calculations indicate that compared to the average values the transformation and cell killing probabilities are higher at bronchial carinal ridges. In addition, a considerable number of cells possessing a not negligible transformation and cell killing probabilities can also be found in the outer sides of the central zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call