Abstract

Various types of biological and synthetic nanopores have been developed and utilized for the high-throughput investigation of individual biomolecules. Biological nanopores made with channel proteins are so far superior to solid-state ones in terms of sensitivity and reproducibility. However, the performance of a biological nanopore is dependent on the protein in the channel structure its dimensions are predetermined and are difficult to modify for broader applications. Here inspired by the cytotoxic mechanisms of a saponin derivative, alpha-hederin, we report a nonproteinaceous nanopore that can be formed spontaneously in a lipid membrane. We propose the pore-forming mechanism of alpha-hederin in a cholesterol-rich lipid membrane and a strategy to control the pore-forming rate by a lipid partitioning method. The small diameter and effective thickness of alpha-hederin nanopores enabled us to discriminate ssDNA homopolymers as well as four types of nucleotides, showing its potential as a DNA sequencing tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.