Abstract

A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-d-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423–8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

Highlights

  • Diabetes mellitus (DM) has become a worldwide epidemic

  • Apparatus and Electrodes Electrochemical measurements were conducted by cyclic voltammetric and amperometric method using a portable μStat 200 potentiostat controlled by Drop View 1.3 software equipped with three electrode configuration which was purchased from DropSens, Spain

  • AG enzyme (0.2 mg/mL) and PNPG (3.0 mM) were immobilized with polyvinyl alcohol (PVA) solution (0.4 wt%) on the screen-printed carbon electrode (SPCE) at pH 4.5 to prevent the premature reaction between the immobilized PNPG and AG enzyme

Read more

Summary

Introduction

The International Diabetes Federation (IDF) reported that the number of adult diabetic patients worldwide is 366 million in November 2011, and it is predicted to increase to 552 million by 2030 [1]. Type 2 DM is caused by degradation of secreted insulin. This type of DM can be managed by diet control and consumption of various synthetic antidiabetic drugs [4]. Despite their efficacy, commercial antidiabetic drugs are often associated with some undesirable adverse side effects such as flatulence, diarrhea, abdominal pain, dropsy, drug-resistance, weight gain, and heart failure [5,6,7,8]. The scientific investigation is increasing for the antidiabetic drugs from natural resources with minimal side effects and cheap

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.