Abstract

Objective. Implicit motor learning, which is a non-conscious form of learning characterized by motor performance improvement with practice, plays an essential role in various daily activities. Earlier study using neurofeedback training (NFT), a type of brain-computer interaction that enables the user to learn self-regulating his/her own brain activity, demonstrated that down-regulating alpha over primary motor cortex by NFT could immediately facilitate the implicit motor learning in a relatively simple motor task. However, detailed effects on EEG and implicit motor learning due to NFT especially in a more complex motor task are still unclear. Approach. We designed a single-blind sham-controlled between-subject study to examine whether alpha down-regulation NFT could facilitate implicit motor learning and also its consolidation in a more difficult and motor predominant task. At left primary motor cortex (C3) in two days, the alpha NFT group received alpha down-regulation training through auditory feedback while the sham-control group received random beta NFT. At the end of NFT, all participants performed the continuous tracking task with their dominant (right) hand to evaluate the implicit motor learning immediately. Finally, the continuous tracking task was performed again on the next day to assess consolidation effects. Main results. The alpha NFT group successfully decreased alpha amplitude during NFT, whereas the sham-control group maintained alpha at a relatively stable level. There was unfortunately no statistical evidence proving that the alpha NFT group significantly enhanced the implicit motor learning at the end of NFT and the consolidation on the next day compared to the sham-control group. Nevertheless, a significant correlation was found between the alpha change trend during NFT and the implicit motor learning for all participants, suggesting that faster alpha down-regulation was associated with better implicit motor learning. Significance. The findings suggested a close link between implicit motor learning and alpha change induced by NFT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.