Abstract

The ability to select task-relevant information and filter out task-irrelevant information is critical to our success in daily goal-directed behavior. Researchers call this ability filtering efficiency and divide it into three cognitive processing stages: detection of distractors, initiation of filtering, and unnecessary storage. Although researchers have conducted more studies on ERP components related to filtration efficiency, there are few studies related to neural oscillations. Alpha oscillation activity is related to the active processing of information and the suppression of distractors. In the current EEG study, we used the change detection task with distracted items to examine whether alpha activity during filtering initiation reflects reactive suppression of distractors by manipulating memory load levels and the presence or absence of distractors. Results showed that, the presence of the distractors caused an increase in the degree of desynchronization of the alpha oscillations, and in the subsequent time, the alpha activity level returned to a level consistent with the absence of interference conditions. Phase synchronization between frontal and posterior brain regions in the upper alpha oscillations found no effects associated with distractors. Based on these results, we believed that the alpha activity during the filtering initiation phase reflected the active processing of distractors, but this may also be due to lower perceptual load of the target items. In addition, we observed a dominance effect of the right hemisphere in both time-frequency results and connectivity results. We speculate that this effect is related to the activation of the right ventral frontoparietal network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call