Abstract

Background Alpha chemokines function predominantly to recruit and activate neutrophils, which are important effectors of acute lung injury. This study evaluated whether blockade of 2 potent alpha chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC), is protective against lung ischemia–reperfusion injury in a warm in situ hilar clamp model. Methods Left lungs of Long–Evans rats underwent normothermic ischemia for 90 minutes and reperfusion for up to 4 hours. Treated animals received antibodies to MIP-2 or CINC immediately prior to reperfusion. Lung injury was quantitated by vascular permeability to 125I-radiolabeled bovine serum albumin, lung tissue neutrophil sequestration (myeloperoxidase [MPO] content), and alveolar leukocyte content in bronchoalveolar lavage (BAL) fluid. CINC and MIP-2 mRNA expression were assessed by northern blot, while ribonuclease protection assays were performed to evaluate mRNA expression for a number of early response cytokines. MIP-2 and CINC protein expression in injured lungs was determined by immunoblotting. Results Treatment with antibodies to CINC or MIP-2 was associated with significant protection against increases in vascular permeability, MPO content and alveolar leukocyte sequestration in injured lungs. Expression of CINC and MIP-2 mRNA peaked after 2 hours of reperfusion in injured lungs, and protein levels were evident on immunoblotting after 3 hours of reperfusion. Neither CINC nor MIP-2 blockade appeared to modulate cytokine mRNA expression. Conclusions CINC and MIP-2 are important mediators involved in direct lung ischemia–reperfusion injury. They appear to function by modulating neutrophil recruitment, but not inflammatory cytokine release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call