Abstract

Antioxidants have a number of potential health benefits. The present investigation was designed to determine the relationship between serum alpha- and gamma-tocopherol levels (powerful antioxidants), and leukocyte telomere length (a biomarker of biological aging). A cross-sectional design was employed to study 5768 adults from the National Health and Nutrition Examination Survey (NHANES). DNA was obtained via blood samples. Telomere length was assessed using the quantitative polymerase chain reaction method. Serum concentrations of alpha- and gamma-tocopherol were measured using high performance liquid chromatography (HPLC). Results showed that for each one-year increase in age, telomeres were 15.6 base pairs shorter (F = 410.4, p < 0.0001). After adjusting for differences in the demographic covariates, for each µg/dL higher level of gamma-tocopherol, telomeres were 0.33 base pairs shorter (F = 7.1, p = 0.0126). Telomeres were approximately 1 year shorter (15.6 base pairs) for each increment of 47.3 to 55.7 µg/dL of gamma-tocopherol in the blood, depending on the variables controlled. Adults at the 75th percentile of gamma-tocopherol had 2.8–3.4 years greater cellular aging than those at the 25th percentile, depending on the covariates in the model. However, alpha-tocopherol was not related to telomere length. Evidently, gamma-tocopherol levels, but not alpha-tocopherol, account for meaningful increases in biological aging.

Highlights

  • Vitamin E is an essential nutrient and a powerful antioxidant

  • Many claims have been made about the potential of vitamin E to improve health and prevent disease because it is a chain-breaking antioxidant that prevents free radical reactions and lipid peroxidation

  • Sample weights were employed to produce results that are generalizable to the non-institutionalized civilian adult population of the United States

Read more

Summary

Introduction

Vitamin E is an essential nutrient and a powerful antioxidant. It is a fat-soluble vitamin that occurs naturally in eight forms. Vitamin E can be divided into two principal classes: tocopherols and tocotrienols. These can be further categorized into slightly different compounds, known as alpha, beta, delta, and gamma [1]. Many claims have been made about the potential of vitamin E to improve health and prevent disease because it is a chain-breaking antioxidant that prevents free radical reactions and lipid peroxidation. The most abundant and biologically active form of vitamin E is alpha-tocopherol [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.