Abstract

Heterogeneous manycores comprised of CPUs, GPUs and accelerators are putting stringent demands on network-on-chips (NoCs). The NoCs need to support the combined traffic, including both latency-sensitive CPU traffic and throughput-sensitive GPU and accelerator traffic. We study the characteristics of the combined traffic, and observe that (1) the limited injection bandwidth is the main obstacle to throughput improvement, and (2) the latency due to local and global contention accounts for a significant portion of the network latency. We propose a router architecture named ALPHA for heterogeneous manycores. ALPHA introduces two new optimizations: (1) increasing injection bandwidth to improve throughput, and (2) resolving local and global contention to reduce network latency. Specifically, ALPHA increases the injection bandwidth through modifications to injection link, crossbar switch and buffer organization in the injection port of the router; ALPHA identifies the upcoming local contention and resolves it by optimally selecting traffic routes; ALPHA detects and alleviates the global contention by utilizing a supervised learning engine for traffic analysis, prediction, and adjustment. Simulation results using Rodinia benchmark show that ALPHA provides 28 percent throughput increase, 24 percent latency reduction, 22 percent execution time speedup, and 19 percent energy efficiency improvement, compared to the baseline router.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.