Abstract

Human erythroleukaemia (HEL) cells were investigated to characterize their alpha 2-adrenoceptor and imidazoline receptor sites. Membranes from HEL cells bound [3H]2-(2-methoxy-1, 4-benzodioxan-2yl)-2-imidazoline ([3H]RX821002) in a saturable and specific manner with a KD of 0.64 +/- 0.07 nM and a Bmax of 126 +/- 4 fmol/mg protein. [3H]RX821002 was displaced from HEL membranes by adrenergic drugs with the order of potency being yohimbine approximately oxymetazoline >> prazosin = 2-[2-[4-(o-methoxyphenyl)piperazin-1-yl]ethyl]-4,4-dimethyl- 1,3(2H,4H)-isochinolindione HCl (ARC 239), consistent with this site being an alpha 2A-adrenoceptor. HEL membranes also bound [3H]idazoxan in the presence of adrenaline to block alpha 2-adrenoceptors. This binding was saturable and specific with a KD of 3.5 +/- 1.0 nM and a Bmax of 31 +/- 6 fmol/mg protein. Adrenergic drugs from both the phenylethylamine and imidazoline classes increased high-affinity GTPase activity, an index of activation of regulatory heterotrimeric guanine-nucleotide binding proteins (G-proteins), and produced increases in cytosolic free calcium concentration ([Ca2+]i). The effects of these agonists in both systems were abolished by pertussis toxin pretreatment, and oxymetazoline and clonidine were antagonists. The potency of adrenergic drugs to inhibit 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304)-induced increases in [Ca2+]i was yohimbine approximately oxymetazoline >> ARC 239, consistent with the binding data and an action at alpha 2A-adrenoceptors. No evidence was found for a role of imidazoline receptors in stimulating G-proteins or modulating [Ca2+]i. The adrenergic agonist-induced increases in [Ca2+]i were due to both release of Ca2+ from intracellular stores and entry of extracellular Ca2+. Ca2+ entry was blocked by 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenylethyl)-1H- imidazole hydrochloride (SKF 96365), but not by nitrendipine. Adrenaline also stimulated Mn2+ entry in HEL cells. Taken together, these results suggest that HEL cells have alpha 2A-adrenoceptors that activate non-selective cation channels via pertussis toxin-sensitive G-proteins, i.e. Gi-proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call