Abstract
Arginine-derived nitric oxide exerts control over the processes of glomerular filtration and tubular reabsorption. The tonic influence of nitric oxide over both of these is eliminated by renal denervation. The hypothesis that the renal nerves function, in this regard, via the activation of alpha 2-adrenoceptors was tested by renal micropuncture. The physical determinants of glomerular filtration and proximal tubular reabsorption were assessed in Munich-Wistar rats before and during the administration of the nitric oxide synthase inhibitor NG-monomethyl L-arginine (L-NMMA). In one set of studies, the systemic infusion of the alpha 2-agonist B-HT 933 rendered nephron GFR, nephron plasma flow, and proximal reabsorption sensitive to reduction by L-NMMA after renal denervation. In a second set of studies, the infusion of the alpha 2 receptor antagonist, yohimbine, to rats with renal nerves intact was found to suppress the effects of L-NMMA on nephron plasma flow and proximal reabsorption. The effects of L-NMMA on nephron GFR and nephron plasma flow, afferent and efferent arteriolar resistances, and proximal reabsorption correlated with the level of underlying alpha 2-adrenergic activity. The activation of renal alpha 2-adrenoceptors increases the influence of arginine-derived nitric oxide in the glomerulus and proximal tubule.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.