Abstract

Colitis-associated colon cancer (CAC) accompanies the massive infiltration of neutrophils during tumorigenesis and progression of CAC. Depletion of neutrophils in circulation results in significant inhibition of tumor incidence in CAC. However, the underlying mechanisms are largely unclear. In this study, we provide evidence for the crucial involvement of inflammatory neutrophil-activated serine proteases (NSPs) on the dysregulation of the anti-inflammatory and antitumor IGFBP-3/IGFBP-3R signaling axis in CAC using a chronic AOM/DSS mouse model. We also provide preclinical evidence for α1-antitrypsin (AAT) as a preventive and as a therapeutic for CAC. AAT administration not only prevented colitis-associated tumorigenesis but also inhibited established CAC. AOM/DSS treatment results in the significant activation of NSPs, leading to CAC through increased pro-inflammatory cytokines and decreased anti-inflammatory and antitumor IGFBP-3. Collectively, these data suggest that the NSPs proteolyze IGFBP-3, whereas AAT inhibits chronic colonic inflammation-induced NSP activity and subsequently suppresses IGFBP-3 proteolysis. Therefore, the anti-inflammatory and antitumor functions of the IGFBP-3/IGFBP-3R axis are restored. AAT mimicking small peptides also showed their inhibitory effects on NSP-induced IGFBP-3 proteolysis. These results suggest that targeting the NSP-IGFBP-3/IGFBP-3R axis using NSP inhibitors such as AAT and the AAT mimics and IGFBP-3R agonists could lead to novel approaches for the prevention and treatment of CAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call