Abstract

MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 339:13-24 (2007) - doi:10.3354/meps339013 Along-shore larval dispersal kernels in a numerical ocean model of the central Chilean coast Christopher M. Aiken1,2, Sergio A. Navarrete1,*, Manuel I. Castillo1, Juan Carlos Castilla1 1Estación Costera de Investigaciones Marinas, Las Cruces, and Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile 2Centro de Investigación en Ecosistemas de la Patagonia, Bilbao 449, Coyhaique, Chile *Corresponding author. Email: snavarrete@bio.puc.cl ABSTRACT: Dispersal kernels provide a useful way to quantify the average spatial distribution of propagules originating from a given point in space. Consequently, dispersal kernels have been used in analytical and numerical studies of short- and long-distance dispersal of marine invertebrates and fish with pelagic larval stages. In most cases, the shape of dispersal kernels is pre-determined and parameterised with knowledge of larval duration or mean current velocities homogeneously across space. Here, the characteristics of planktonic larval dispersal for near-shore species in a realistic coastal ocean flow are investigated through the use of a numerical ocean model of a section of the central Chilean coast. The 3-dimensional primitive equation model was forced by 4 yr of observed winds from Las Cruces. Planktonic larval dispersal was simulated by advecting passive drifters using the evolving model velocity field. No a priori assumptions were made about diffusion-advection statistics. Drifters were released daily from regularly spaced locations along the coast and were considered to have settled if found within 1 km of the coast 30 d after release. Observed dispersal kernels were then calculated for each release location, and their variability in space and time was examined. This variability was found to be substantial over spatial scales less than a typical larval-advection scale, and, as a result, a spatially and temporally averaged dispersal kernel was inadequate as a global model of settlement. Large along-shore variation in the shape of dispersal kernels led to significant variation in the spatial pattern of connectivity among local sites, with some acting as net sources and some as net sinks within scales of 10s of kilometres. These results are linked to the along-shore and seasonal variability in ocean circulation, in particular close to shore. Both local and global dispersal kernels were found to be non-Gaussian, with their distribution related to that of the ocean velocity field. It is concluded that, in realistic flows with complicated coastal geometry, considerable departure from the expected Gaussian dispersal kernels based on homogeneous flow conditions can lead to complex spatial patterns of connectivity and successful settlement along a relatively simple but real coastline. KEY WORDS: Larval settlement · Population connectivity · Recruitment · Marine reserves · Nearshore oceanography · Upwelling · Wind stress · Dispersal Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 339. Online publication date: June 06, 2007 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2007 Inter-Research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.