Abstract

AbstractSignificant along-strike changes in the protothrust zone at the toe of the Nankai Trough accretionary prism were imaged in new high-resolution seismic reflection data. The width of the protothrust zone varies greatly along strike; two spatially discrete segments have a wide protothrust zone (∼3.3–7.8 km, ∼50–110 protothrusts), and two segments have almost no protothrust zone (∼0.5–2.8 km, <20 protothrusts). The widest protothrust zone occurs in the region with the widest and thickest sediment wedge and subducting turbidite package, both of which are influenced by basement topography. The trench wedge size and lithology, the lithology of the subducting section, and the basement topography all influence the rate of consolidation in the trench wedge, which we hypothesize is an important control over the presence and width of the protothrust zone. We conclude that protothrusts are fractures that form from shear surfaces in deformation band clusters as the trench fill sediment is consolidated. Strain localization occurs at sites with a high density of protothrusts, which become the probable locations of future frontal thrust propagation. The frontal thrust may propagate forward with a lower buildup of strain where it is adjacent to a wide protothrust zone than at areas with a narrow or no protothrust zone. This is reflected in the accretionary prism geometry, where wide protothrust zones occur adjacent to fault-propagation folds with shallow prism toe surface slopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call