Abstract
Motivated by the need to hide the complexity of the physical layer from performance analysis in a layer 2 protocol, a class of abstract receivers, called Poisson receivers, was recently proposed by Yu <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> (2021) as a probabilistic framework for providing differentiated services in uplink transmissions in 5G networks. In this paper, we further propose a deterministic framework of ALOHA receivers that can be incorporated into the probabilistic framework of Poisson receivers for analyzing coded multiple access with successive interference cancellation. An ALOHA receiver is characterized by a success function of the number of packets that can be successfully received. Inspired by the theory of network calculus, we derive various algebraic properties for several operations on success functions and use them to prove various closure properties of ALOHA receivers, including (i) ALOHA receivers in tandem, (ii) cooperative ALOHA receivers, (iii) ALOHA receivers with traffic multiplexing, and (iv) ALOHA receivers with packet coding. By conducting extensive simulations, we show that our theoretical results match extremely well with the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.