Abstract

This study reveals the fabrication of a sunlight receptive flower shaped rutile TiO2 microstructure (F-TiO2) for the selective photoreduction of nitroaromatics. The crystalline F-TiO2 possesses small band gap (∼2.8 eV) and large specific surface area (193 m2g−1). Moreover, the F-TiO2 exhibited higher relaxation time (120 µs) for the electron-hole pairs due to its brilliant multi dimensional morphology that enables shorter diffusion path and multiple scattering of active sites. The experimental results revealed the superior photocatalytic activity of the F-TiO2 microstructure in contrast to active P25 and rutile TiO2 (obtained from thermally treated P25 at 800 °C for 4 h) for the reduction of nitrobenzene, m-dinitrobenzene and 2,2-dinitrobiphenyl in 50% aqueous isopropanol (hole scavenger) to aniline (42–72%), m-nitroaniline (37–42%), m-phenylenediamine (88–100%) and benzo[c]cinnoline (80–94%) respectively under UV and direct sunlight irradiation. The quantitative estimation of byproducts like acetone and hydrogen (H2) produced from iso-propanol oxidation and water splitting during instant reduction of nitroaromatics to aromatic amines is well correlated and explained on the basis of its beneficial surface structural and electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call