Abstract
Telomerase plays an essential role in cancer cell proliferation. In this study, we investigated inhibition mechanism of aloe emodin (AE) on three different types of breast cancer cell lines, MDA-MB-453, MDA-MB-231 and MCF-7. The cells were treated with different concentrations of AE. Relative length of telomere and human telomerase reverse-transcriptase (hTERT) mRNA level was analyzed by quantitative PCR (qPCR). Protein level was assayed by Western blot. Sodium bisulfite methylation sequencing was performed to assess the methylation status of gene promoter. Enzymology kinetics was applied to reveal the interaction between AE and telomerase. Ultraviolet-visible titration and fluorescence resonance energy transfer (FRET) melting experiment were carried out to study the interaction between AE and telomeric DNA. Continuous AE exposure of these cells for 48 h results in shortening of telomeres and inhibition of telomerase. The transcription of hTERT was repressed by activation of E2F1 and inactivation of c-myc proteins. Significant demethylation of CpG islands in hTERT gene promoter was observed in MDA-MB-453 and MCF-7 cells. AE competed with dNTP for occupation of the enzyme active site. AE was a telomeric G-quadruplex structure stabilizer as indicated by titration test and FRET experiments. AE was a competitive inhibitor of telomerase and a G-quadruplex structure stabilizer. AE decreased the transcription of hTERT gene in the three breast cancer cell lines via up-regulation E2F1 and down-regulation c-myc expressions. The suppressed transcription was also related to the demethylation of the gene promoter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.