Abstract

Biofilm formation is one of the most important factors causing drug resistance of Helicobacter pylori. Therefore, it is necessary to explore the mechanism underlying the biofilm formation and its eradication methods. The outer membrane proteins (OMPs) play important roles in the formation of bacterial biofilms and are considered the essential targets for new drug discovery. Natural products play significant roles in anti-bacterial and anti-biofilm functions. This study explored the key OMPs involved in the biofilm formation of H. pylori and the natural products that target these OMPs. Transcriptome sequencing, gene knockout, and electrophoretic mobility shift assay (EMSA) were performed to reveal that OMP6 was involved in the biofilm formation of H. pylori, which was regulated by non-phosphorylated ArsR. Molecular docking suggested that aloe-emodin (AE) could target OMP6 and destroy the biofilms of H. pylori. Further exploration of its mechanism found that AE could also inhibit the expression of omp6 mRNA by binding to its regulator ArsR. In summary, we have discovered a novel molecular mechanism regulating the biofilm formation of H. pylori and identified a natural product against H. pylori biofilms, providing potential clues for clinical treatment of H. pylori.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call