Abstract

For a \(2n+1\)-dimensional compact Sasakian manifold, if \(n\ge 2\), we prove that the analytic germ of the variety of representations of the fundamental group at every semi-simple representation is quadratic. To prove this result, we prove the almost-formality of de Rham complex of a Sasakian manifold with values in a semi-simple flat vector bundle. By the almost-formality, we also prove the vanishing theorem on the cup product of the cohomology of semi-simple flat vector bundles over a compact Sasakian manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.