Abstract

In the online hypergraph matching problem, hyperedges of size k over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of 1k. We show that no (randomized) online algorithm has competitive ratio better than 2+o(1)k. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio 1−o(1)ln⁡(k) and show that no online algorithm can have competitive ratio strictly better than 1+o(1)ln⁡(k). Lastly, we give a 1−o(1)ln⁡(k) competitive algorithm for the fractional edge-weighted version of the problem under a free disposal assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.