Abstract

AbstractTheorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA $_{0}$ they are THAs but on their own they are very weak. We generalize several conservativity classes ( $\Pi _{1}^{1}$ , r- $\Pi _{2}^{1}$ , and Tanaka) and show that all our examples (and many others) are conservative over RCA $_{0}$ in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA $_{0}$ but over ACA $_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.