Abstract

In this paper, we study the stability of discrete-time switched linear systems via symbolic topology formulation and the multiplicative ergodic theorem. A sufficient and necessary condition for $\mu_A$-almost sure stability is derived, where $\mu_A$ is the Parry measure of the topological Markov chain with a prescribed transition (0,1)-matrix A. The obtained $\mu_A$-almost sure stability is invariant under small perturbations of the system. The topological description of stable processes of switched linear systems in terms of Hausdorff dimension is given, and it is shown that our approach captures the maximal set of stable processes for linear switched systems. The obtained results cover the stochastic Markov jump linear systems, where the measure is the natural Markov measure defined by the transition probability matrix. Two examples are provided to illustrate the theoretical outcomes of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.