Abstract

Abstract We study the derivative nonlinear wave equation $- \partial _{tt} u + \Delta u = |\nabla u|^2$ on $\mathbb{R}^{1 +3}$. The deterministic theory is determined by the Lorentz-critical regularity $s_L = 2$, and both local well-posedness above $s_L$ as well as ill-posedness below $s_L$ are known. In this paper, we show the local existence of solutions for randomized initial data at the super-critical regularities $s\geqslant 1.984$. In comparison to the previous literature in random dispersive equations, the main difficulty is the absence of a (probabilistic) nonlinear smoothing effect. To overcome this, we introduce an adaptive and iterative decomposition of approximate solutions into rough and smooth components. In addition, our argument relies on refined Strichartz estimates, a paraproduct decomposition, and the truncation method of de Bouard and Debussche.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.