Abstract

In this paper, the problem of almost sure H∞ filtering is studied for a class of nonlinear hybrid stochastic systems. In the system under investigation, Markovian jumping parameters, mode-dependent interval delays, nonzero exogenous disturbances as well as white noises are simultaneously taken into consideration to better model the real-world systems. Intensive stochastic analysis is carried out to obtain sufficient conditions for ensuring the almost surely exponential stability and the prescribed H∞ performance for the overall filtering error dynamics. Furthermore, the obtained results are applied to two classes of special hybrid stochastic systems with mode-dependent interval delays, where the desired filter gain is obtained in terms of the solutions to a set of linear matrix inequalities. Finally, two numerical examples are provided to show the effectiveness of the proposed filter design scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.