Abstract
This article presents sufficient conditions, which provide almost sure (a.s.) approximation of the superposition of the random processes S(N(t)), when cad-lag random processes S(t) and N(t) themselves admit a.s. approximation by a Wiener or stable Levy processes. Such results serve as a source of numerous strong limit theorems for the random sums under various assumptions on counting process N(t) and summands. As a consequence we obtain a number of results concerning the a.s. approximation of the Kesten–Spitzer random walk, accumulated workload input into queuing system, risk processes in the classical and renewal risk models with small and large claims and use such results for investigation the growth rate and fluctuations of the mentioned processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.