Abstract
Exploring the dynamic behaviors of the damping nonlinear Schrödinger equation (NLSE) with periodic perturbation is a challenge in the field of nonlinear science, because the numerical approaches available for damping-driven dynamic systems may exhibit the artificial dissipation in different degree. In this paper, based on the generalized multi-symplectic idea, the local energy/momentum loss expressions as well as the approximate symmetric form of the linearly damping NLSE with periodic perturbation are deduced firstly. And then, the local energy/momentum losses are separated from the simulation results of the NLSE with small linear damping rate less than the threshold to insure structure-preserving properties of the scheme. Finally, the breakup process of the multisoliton state is simulated and the bifurcation of the discrete eigenvalues of the associated Zakharov–Shabat spectral problem is obtained to investigate the variation of the velocity as well as the amplitude of the solitons during the splitting process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.