Abstract
For a split Kac–Moody group G over an ultrametric field K , S. Gaussent and the author defined an ordered affine hovel (for short, a masure) on which the group acts; it generalizes the Bruhat–Tits building which corresponds to the case when G is reductive. This construction was generalized by C. Charignon to the almost split case when K is a local field. We explain here these constructions with more details and prove many new properties, e.g. that the hovel of an almost split Kac–Moody group is an ordered affine hovel, as defined in a previous article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.