Abstract
It is shown that a canonical time observable may be defined for any quantum system having a discrete set of energy eigenvalues, thus significantly generalizing the known case of time observables for periodic quantum systems (such as the harmonic oscillator). The general case requires the introduction of almost-periodic probability operator measures (POMs), which allow the expectation value of any almost-periodic function to be calculated. An entropic uncertainty relation for energy and time is obtained which generalizes the known uncertainty relation for periodic quantum systems. While non-periodic quantum systems with discrete energy spectra, such as hydrogen atoms, typically make poor clocks that yield no more than 1 bit of time information, the anisotropic oscillator provides an interesting exception. More generally, a canonically conjugate observable may be defined for any Hermitian operator having a discrete spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.