Abstract

Abstract A discrete nonlinear almost periodic multispecies competitive system with delays and feedback controls is proposed and investigated. We obtain sufficient conditions to ensure the permanence of the system. Also, we establish a criterion for the existence and uniformly asymptotic stability of unique positive almost periodic solution of the system. In additional, an example together with its numerical simulation are presented to illustrate the feasibility of the main result.

Highlights

  • The importance of species competition in nature is obvious

  • We establish a criterion for the existence and uniformly asymptotic stability of unique positive almost periodic solution of the system

  • Gopalsamy [2] discussed the continuous version with discrete delays, Tan and Liao [3] established the discrete time version with discrete delays, Xue et al [4] proposed the discrete time version with in nite delays and single feedback control

Read more

Summary

Introduction

The importance of species competition in nature is obvious. For example, competition may be territory which is directly related to food resources. We establish a criterion for the existence and uniformly asymptotic stability of unique positive almost periodic solution of the system. Almost periodic solution of a discrete competitive system with delays and feedback controls where {ri(k)}, {ai(k)}, {bij(k)}, {dij(k)}, {ei(k)}, {fi(k)} and {gij(k)} are bounded nonnegative almost periodic sequences such that

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.