Abstract
This paper is concerned with an almost population dynamic system on time scales. Using the theory of calculus on time scales and some mathematical methods, several comparison theorems on time scales are established. Based on these results, we derive some sufficient conditions for permanence of the system. Moreover, using the properties of almost periodic functions and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the existence of uniformly, asymptotically stable almost periodic solution of the system are obtained. As an application, we applying the obtained results to a single-species system with distributed delay on time scales. Finally, two examples together with their numerical simulations are presented to illustrate the feasibility and effectiveness of the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Dynamical Systems and Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.