Abstract

This paper examines the issue of almost periodic quasi-projective synchronization of delayed fractional-order quaternion-valued neural networks. First, using a direct method rather than decomposing the fractional quaternion-valued system into four equivalent fractional real-valued systems, using Banach’s fixed point theorem, according to the basic properties of fractional calculus and some inequality methods, we obtain that there is a unique almost periodic solution for this class of neural network with some sufficient conditions. Next, by constructing a suitable Lyapunov functional, using the characteristic of the Mittag-Leffler function and the scaling idea of the inequality, the adequate conditions for the quasi-projective synchronization of the established model are derived, and the upper bound of the systematic error is estimated. Finally, further use Matlab is used to carry out two numerical simulations to prove the results of theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call