Abstract

The method of sub- and super-solutions is a classical tool in the theory of second-order differential equations. It is known that this method does not have a direct extension to almost periodic equations. We show that if an almost periodic second-order semi-linear elliptic equation possesses an ordered pair of almost periodic sub- and super-solutions, then very many equations in the envelope have either almost automorphic solutions, or Besicovitch almost periodic solutions. In addition, we provide an application to almost periodically forced pendulum equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.