Abstract
A sequence in a separable Banach space X 〈resp. in the dual space X⁎〉 is said to be overcomplete (OC in short) 〈resp. overtotal (OT in short) on X〉 whenever the linear span of each subsequence is dense in X 〈resp. each subsequence is total on X〉. A sequence in a separable Banach space X 〈resp. in the dual space X⁎〉 is said to be almost overcomplete (AOC in short) 〈resp. almost overtotal (AOT in short) on X〉 whenever the closed linear span of each subsequence has finite codimension in X 〈resp. the annihilator (in X) of each subsequence has finite dimension〉. We provide information about the structure of such sequences. In particular it can happen that, an AOC 〈resp. AOT〉 given sequence admits countably many not nested subsequences such that the only subspace contained in the closed linear span of every of such subsequences is the trivial one 〈resp. the closure of the linear span of the union of the annihilators in X of such subsequences is the whole X〉. Moreover, any AOC sequence {xn}n∈N contains some subsequence {xnj}j∈N that is OC in [{xnj}j∈N]; any AOT sequence {fn}n∈N contains some subsequence {fnj}j∈N that is OT on any subspace of X complemented to {fnj}j∈N⊤.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.