Abstract

We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer exact distance queries. The main tension in this problem is between space S and query time Q , and since the mid-1990s all results had polynomial time-space tradeoffs, e.g., Q = ~ Θ( n/√ S ) or Q = ~Θ( n 5/2 /S 3/2 ). In this article we show that there is no polynomial tradeoff between time and space and that it is possible to simultaneously achieve almost optimal space n 1+ o (1) and almost optimal query time n o (1) . More precisely, we achieve the following space-time tradeoffs: n 1+ o (1) space and log 2+ o (1) n query time, n log 2+ o (1) n space and n o (1) query time, n 4/3+ o (1) space and log 1+ o (1) n query time. We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams and develop new algorithms for the point location problem itself using several partially persistent dynamic tree data structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call