Abstract
We consider Anzellotti-type almost minimizers for the thin obstacle (or Signorini) problem with zero thin obstacle and establish their \(C^{1,\beta }\) regularity on the either side of the thin manifold, the optimal growth away from the free boundary, the \(C^{1,\gamma }\) regularity of the regular part of the free boundary, as well as a structural theorem for the singular set. The analysis of the free boundary is based on a successful adaptation of energy methods such as a one-parameter family of Weiss-type monotonicity formulas, Almgren-type frequency formula, and the epiperimetric and logarithmic epiperimetric inequalities for the solutions of the thin obstacle problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.