Abstract

We consider locally symmetric almost Kenmotsu manifolds showing that such a manifold is a Kenmotsu manifold if and only if the Lie derivative of the structure, with respect to the Reeb vector field $\xi$, vanishes. Furthermore, assuming that for a $(2n+1)$-dimensional locally symmetric almost Kenmotsu manifold such Lie derivative does not vanish and the curvature satisfies $R_{XY}\xi =0$ for any $X, Y$ orthogonal to $\xi$, we prove that the manifold is locally isometric to the Riemannian product of an $(n+1)$-dimensional manifold of constant curvature $-4$ and a flat $n$-dimensional manifold. We give an example of such a manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call